Review

A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology

Felix Scholkmann a, Stefan Kleiser a, Andreas Jaakko Metz a, Raphael Zimmermann a,b, Juan Mata Pavia a, Ursula Wolf c, Martin Wolf a,b

a Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, 8091 Zurich, Switzerland
b Rehabilitation Engineering Laboratory, ETH Zürich, 8092 Zurich, Switzerland
c Institute of Complementary Medicine, University of Bern, 3010 Bern, Switzerland

Abstract

This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed.

From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects.

© 2013 Elsevier Inc. All rights reserved.

Contents

Introduction ... 7
Overview of commercially available imaging instrumentation .. 8
Technological design aspects of fNIRI ... 10
Light sources for fNIRI instruments .. 10
Selection of optimum wavelengths .. 11
Two wavelengths .. 11
Three and more wavelengths ... 12
Photodetectors for fNIRI instruments ... 12
Probe design .. 13
Analysis of fNIRI signals ... 15
Approaches to determine the [O₂Hb] and [HHb] .. 15
Modified Beer–Lambert Law (MBLL) .. 15
Methods to separate different components in fNIRI signals 16
Classification of signal components .. 16
Challenges for classification and separation of the signal components 17
Mathematical and technical methods to separate the signal components 18
Univariate methods ... 18
Multivariate methods of type 1 ... 18
Multivariate methods of type 2 ... 20

* Corresponding author.
E-mail address: martin.wolf@usz.ch (M. Wolf).

1053-8119/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.neuroimage.2013.05.004
Introduction

Continuous light has been used to non-invasively investigate human tissue such as the breast, head and testes by transmitting the light through the body as early as at least in the 19th century (Bright, 1831; Curling, 1856; Cutler, 1929). More specifically, already in 1862 Hoppe-Seyler from Germany, described the spectrum of oxy-hemoglobin (O₂Hb) (Perutz, 1995) and in 1864 Stokes from the United Kingdom added the spectrum of deoxy-hemoglobin (Hb) and consequently discovered the importance of hemoglobin for the oxygen transport (Perutz, 1995). In 1876 von Vierordt, also from Germany, analyzed tissue by measuring the spectral changes of light penetrating tissue when the blood circulation was occluded (Severinghaus, 2007; von Vierordt, 1876) and in 1894 Hübner from Germany spectroscopically determined absolute and relative amounts of O₂Hb and Hb in vitro (Hübner, 1894). After decades of no relevant research in this field, in the 1930s the work on spectroscopic determination of tissue oxygenation was continued by several researchers. For example Nicolai, Germany, repeated the study of von Vierordt (Nicolai, 1932a,b), and Matthes and Gross, Germany, demonstrated for the first time the spectroscopic determination of O₂Hb and Hb in human tissue using two wavelengths, one in the red and near-infrared region (Matthes and Gross, 1938a,b,c).

In terms of quantification, an important first step was the discovery of the Beer–Lambert law first by the French mathematician Bouguer in 1729 (Bouguer, 1729). It is often attributed to the Swiss Lambert, although he cited Bouguers work in 1760 himself (Lambert, 1760). The law was extended by the German Beer to quantify concentrations in 1852 (Beer, 1852). Since the Beer–Lambert law is only valid in non-scattering media, it cannot be applied to biological tissue. Relatively recently therefore the modified Beer–Lambert law (MBLL) was developed by the British Delpy (Delpy et al., 1988), to take into account the light scattering. The MBLL is often used by many instruments described in this review. Further important steps were also analytical solutions of the diffusion equation (e.g. Arridge et al., 1992; Patterson et al., 1989) to quantitatively describe light transport in tissue.

Based on the insight of the relative transparency of the tissue including the skull in the near infrared range in 1977 Jobsis from the USA first demonstrated the feasibility to continuously and non-invasively monitor the concentration of O₂Hb and Hb in the brain (Jobsis, 1977). Therefore he is considered to be the initiator of near-infrared spectroscopy (NIRS).

His discovery led to designing and building of several NIRS instruments (Ferrari and Quaresima, 2012). All these instruments were continuous wave (CW) instruments. The term “continuous wave” means that the instrumentation is solely based on a light intensity measurement, i.e. near-infrared light is sent into the tissue and the intensity of the re-emerging (i.e. diffusely reflected) light is measured. This is in contrast to time resolved techniques such as time and frequency domain techniques, which, additionally to the intensity measurements also measure the time of flight, i.e. the time that the light needs to travel through the tissue. For a visualization of the three different techniques please refer to Fig. 1.

The disadvantage of CW systems is that they cannot fully determine the optical properties of tissue (i.e. light scattering (μₐ') and absorption (μₐ) coefficients) and therefore the [O₂Hb] and [Hb] cannot be determined absolutely. However, with a few reasonable assumptions it is possible to quantify changes in [O₂Hb] and [Hb]. Therefore, during the first years, NIRS instruments were mostly trend monitors, employed to study various physiological conditions and clinical interventions. Much research was aimed at obtaining absolute values either by physiological maneuvers (e.g. Edwards et al., 1988; Wyatt et al., 1990) or enhancing the instrumentation (e.g. Matcher et al., 1994, 1995b; Wolf et al., 1997). Later time resolved techniques were developed and became available and enabled to determine absolute values. This will not be discussed further, because it is not within the scope of this review.

1993 was a crucial year in the development of functional NIRS (fNIRS) of the brain. In the same year four research groups published results and demonstrated that it is possible to non-invasively investigate brain activity using NIRS (Chance et al., 1993; Hoshi and Tamura, 1993; Kato et al., 1993; Villringer et al., 1993). Brain activity leads to an increase in oxygen consumption, which is accompanied by an increase in cerebral blood flow due to neurovascular coupling. This leads to a change in the local [O₂Hb] and [Hb] (Wolf et al., 2002), which can be detected non-invasively by NIRS. These first measurements were carried out with simple instruments, which measured at one or a few locations. Since brain activity in response to a stimulation occurs only at specific locations in the brain, when measuring just at one location it is often difficult to find the correct position on the head.

![Ilustration of the three different NIRI techniques](image-url)
for the measurement. In addition, there is a scientific interest in measuring a spatial pattern, how the brain activity affects an area of the brain.

A next major step in the development was to design imaging instruments that covered a larger area of the head and enabled mapping of brain activity, i.e. to deliver topographic information (Ferrari and Quaresima, 2012; Maki et al., 1995). This had several advantages: it enabled to localize brain activity and the precise localization of the sensor was less important. This technology is called functional near infrared imaging (fNIRI). On the one hand, it was quite clear that it is highly important to expand the interrogated area by using imaging systems. On the other hand, quantification is not that important in neuroscience, i.e. it is more important to statistically significantly detect a change in brain activity than to quantify it in absolute terms. For these reasons up to today most imaging systems are based on CW technology. In addition, time resolved systems have a lower time resolution, are more expensive and the time of flight is generally a more noisy parameter than the intensity and therefore not useful for detecting small functional activations. In contrast, CW systems are relatively low cost, can be miniaturized and wireless systems and can be applied unobtrusively in everyday life situations or even freely moving animals (Muehlmann et al., 2008).

As a next step, sensor arrangements where several source detector distances are measured simultaneously, so-called overlapping measurements, enabled to apply tomographic approaches, i.e. image reconstructions in three dimensions (Joseph et al., 2006).

Today fNIRI has entered neuroscience as a research tool. It has been shown that fNIRI is reliable and trustworthy for research based on investigating groups of subjects, although reliability in single subjects is not sufficient yet (Kono et al., 2007; Plichta et al., 2006, 2007a,b; Schecklmann et al., 2008). Consequently, the number of publications on fNIRI in neuroscience has increased exponentially within the last years.

One of the next aims is to apply fNIRI clinically. For this purpose it will be compulsory to ensure a high reproducibility in single subjects. However, a sufficient reliability on the single subject level has not yet been achieved (Biallas et al., 2012a,b; Kono et al., 2007; Plichta et al., 2006, 2007a,b; Schecklmann et al., 2008). Hence, some research is currently focused on improving the reliability. Possible reasons for the lack in reliability are the superficial tissue (i.e. light has to penetrate several tissue layers such as e.g. skin and skull before it reaches the brain) or systemic physiological changes, which contaminate the signal of the brain and possibly instrumental shortcomings such as an insufficiency in spatial resolution and/or signal to noise ratio (SNR). Generally there are several possibilities to improve reliability: On the instrumental level, it is important to select appropriate wavelengths, light sources, detectors, and geometrical arrangements to avoid crosstalk and ensure a high SNR; on a methodological level the aim is to reduce the influence of superficial tissue or systemic components.

The aim of this paper is to review the current state of instrumentation and methodology of CW fNIRI. For this purpose we will give an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects such as algorithms to determine \([O_2Hb]\) and \([HHb]\) and data analysis will also be reviewed.

There is a variety of terms used for NIRS. In general the term NIRS is often used as an overarching term for the whole technology, but in principle it only refers to NIRI systems measuring at single locations with up to four sensors, but without imaging capacity. Imaging systems, which we will call NIRI here, have more than 4 channels and produce two or three dimensional images. In the literature, 2D imaging systems are also called near infrared topography or mapping, or diffuse optical imaging. 3D imaging systems are also called near infrared tomography or mapping, or diffuse optical tomography or imaging. The term “diffuse” refers to the fact that due to the high \(\mu_s\) in tissue the propagation of photons through tissue can be modeled as a diffusion process. Unfortunately, the term “diffuse” is often misinterpreted as blurred or fuzzy, i.e. referring to a negative connotation of the technique, which clearly is not meant or adequate. As for magnetic resonance imaging (MRI), which was formerly referred to as nuclear magnetic resonance, the term “nuclear” falsely evoked the association of a radioactive method, we propose to abandon the term “diffuse” in the future to avoid this negative connotation. The spatially resolved measurement of brain activity in two and three dimensions we call functional NRII (fNIRI). All systems (except for one) and methods reviewed here are generally about CW fNIRI and therefore the term “CW” will be omitted below.

Overview of commercially available imaging instrumentation

There is already a wide variety of commercially available fNIRI devices in the market. Therefore, researchers are likely to find devices suited for their respective needs. System complexity ranges from few sources and detectors suitable to image certain brain areas to systems covering the whole head. Some devices use sensor patches (D2, D3, D4, D7, D14, see Table 1) with integrated components whereas all others use optical fibers and flexible head-caps allowing for adjustments to the individual subject. Different systems offer different degrees of sensor comfort which is an important factor for studies with prolonged measurement times. While most fNIRI devices are larger in size and transportable on a cart, some can be attached to the subject and transmit data wirelessly to a control PC, offering new possibilities such as the analysis of gait or the unrestrained interaction of freely moving persons or animals. This variety of devices and concepts is also reflected in prices, which vary from some $10,000 for simple systems to several $100,000 for whole-head imaging systems.

Additionally to our pre-existing knowledge we have searched the internet for manufacturers of fNIRI devices. Subsequently we contacted all identified manufacturers of commercial fNIRI devices with a questionnaire and compiled an overview of devices with more than 4 channels in Table 1. All information presented has been retrieved from representatives of the corresponding manufacturer. Manufacturers often offer different set-ups for their devices and usually offer several accessory and software options. If this is the case, this variety is represented by spans of values. The URLs of all manufacturers were included to give the reader the possibility to contact manufacturers directly for more details.

The following properties apply to most or all devices and are not listed in Table 1:

- All devices except for device D7 are sold world-wide.
- All devices offer a software solution for computing hemoglobin changes from raw intensity data. Most devices measure relative changes in \([O_2Hb]\) and \([HHb]\) using the MBLL (Delpy et al., 1988).
- No information was obtained about the algorithms used in proprietary software of instruments D3, D4 and D13. We would like to emphasize, that unpublished algorithms are a considerable disadvantage in the scientific community, because they limit the possibility to interpret the results.
- For data evaluation, some manufacturers offer proprietary software, others make their software available and others prefer the use of open-source toolboxes such as HomER2 (Huppert et al., 2009; PMILab, 2012), NIR-S-SPM, or NIF RAST (Dehghani et al., 2009a). The latter is more recommendable, because the algorithms are published/known and results can be interpreted accordingly. In addition, this allows for easier customization if desired. Such free post-processing tools can be used with most instruments.
- Instruments D1, D2 and D17 can optionally measure tissue oxygen saturation using spatially resolved spectroscopy (Challenges for classification and separation of the signal components section). This may also be possible with other devices by using proper optode arrangements, calibration and post-processing software.
- All devices can be exposed to ambient light without any risk of damaging the detectors. Although most devices remove smaller amounts of ambient light reaching the detectors either by hardware (devices
using frequency or code multiplexing and D1) or by software (instruments D2, D3 and D4), exposure to ambient light during measurements should be avoided, because the dynamic range of the detector will be decreased, additional shot noise will affect SNR negatively and high levels of ambient light may saturate the detectors, which completely invalidates the data.

- To reduce the running costs, all devices employ re-usable sensors that can be disinfected. A wide variety of optode holders or sensors are available for all devices, allowing also for measurements in children, except for D7 which is only intended for use in adults.

- Maximum averaged light emission per source is typically in the range of 5–20 mW optical power or below. Some devices (D2, D3, D4, D7, D14) use headprobes with integrated optical components. See also Light sources for fNIRI instruments section for more information on the types of light sources.

- NIRI devices are often characterized by their number of channels. If we define one channel as one path between one emitter including all its wavelengths and one detector, then the maximum (theoretical) number of channels for a 16 emitter and 32 detector system will be 16 * 32 = 512 channels. Note that in practice detectors cannot detect light from very distant emitters (for example on the opposite side of an adult head) and that there may also be space constraints which may inhibit placing all optodes on the subject. Therefore, in practice the number of usable channels for such systems with 16 sources and 32 detectors is in the range of 50–200 channels and depends strongly on the optodes arrangement. Since this discrepancy might be misleading especially for large systems, no channel number is presented in Table 1.

- Some devices offer interfaces to allow for multi-modal imaging and have successfully been used for example in simultaneous measurements of fNIRI and MEG (Seki et al., 2012), EEG (Hebden et al., 2012; Leamy and Ward, 2010), fMRI (Habermehl et al., 2012a; Toronov et al., 2001; X. Zhang et al., 2005) and other modalities.

In the following, the nomenclature of Table 1 is explained:

- **Time-res:** Maximum time resolution in Hz. Given is the range for the sampling rate of the system. The lower value corresponds to the maximum sampling rate using the maximum number of sources and detectors. The higher value corresponds to the maximum sampling rate using a reduced set of channels. A slash (/) denotes two distinct sampling modes.
- **Emitter:** Number of emitters. One emitter includes the whole set of wavelengths the device uses, which illuminate the same spot of the tissue. If a span is given, then the system uses a modular design and can be ordered in different configurations. If values are separated by a slash (/) then different types of NIRI sensors can be attached to the device.
- **Detector:** Number of detectors. If a span is given, then the system uses a modular design and can be ordered in different configurations. If values are separated by a slash (/) then different types of NIRI sensors can be attached to the device.
- **MUX:** Multiplexing method to distinguish signals from different sources and detectors. The higher value corresponds to the maximum sampling rate using the maximum number of channels. A slash (/) denotes two distinct sampling modes.
- **Wavelengths:** Default peak wavelengths used by the device. Parentheses (i.e. diodes are turned on permanently and different diodes are each modulated with a distinct frequency), (c)ode multiplexing (i.e. all diodes are turned on based on a different bit-sequence for each emitter; D1: proximity detector embedded in each emitter; D12: two systems can be paired for doubled emitters and detectors; D13: two systems can be paired for doubled emitters and detectors, 7.5 Hz time-resolution using 8 Emitters; D14: can measure SpO2, OEG-16 also available (no fast sampling, no SpO2 measurement); D17: frequency domain instrument, otherwise comparable in functionality.

Table 1

<table>
<thead>
<tr>
<th>Device</th>
<th>(Manufacturer), country</th>
<th>Time-res. [Hz]</th>
<th>#Emitter</th>
<th>#Detector</th>
<th>MUX</th>
<th>E-tech</th>
<th>Wavelengths [nm]</th>
<th>D-tech</th>
<th>Data</th>
<th>Wear</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 OXYMON MkIII†</td>
<td>(Artinis), Netherlands</td>
<td>250</td>
<td>32</td>
<td>16</td>
<td>t</td>
<td>a</td>
<td>Laser 760, 850</td>
<td>APD</td>
<td>Raw</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>D2 PortaLite</td>
<td>(Artinis), Netherlands</td>
<td>50</td>
<td>3</td>
<td>1</td>
<td>t</td>
<td>20 + 25 / 30 + 35 + 40</td>
<td>LED 760, 850</td>
<td>Raw</td>
<td>y</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>D3 NIR1100</td>
<td>(NIR Devices), USA</td>
<td>2</td>
<td>1/1/4</td>
<td>2/4/10</td>
<td>t</td>
<td>20/25/25/LED 730, 850</td>
<td>Hb</td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4 NIR1100w</td>
<td>(NIR Devices), USA</td>
<td>2</td>
<td>1</td>
<td>2/4</td>
<td>t</td>
<td>20/25/LED 730, 850</td>
<td>Hb</td>
<td>y</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5 ETC-4000</td>
<td>(Hitachi), Japan</td>
<td>10</td>
<td>18</td>
<td>8</td>
<td>f</td>
<td>20/30/Laser 695, 830</td>
<td>APD</td>
<td>Raw n</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6 ETC-7100</td>
<td>(Hitachi), Japan</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>f</td>
<td>20/30/Laser 695, 830</td>
<td>APD</td>
<td>Raw n</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D7 WOT</td>
<td>(Hitachi), Japan</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>t</td>
<td>30/Laser 705, 830</td>
<td>PD Raw</td>
<td>y</td>
<td>n*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8 Genie</td>
<td>(MRRA), USA</td>
<td>5.02</td>
<td>4</td>
<td>16</td>
<td>8 to 32</td>
<td>c</td>
<td>a LED 700, 830</td>
<td>PD Raw</td>
<td>y</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>D9 NIRScout</td>
<td>(NIRx), USA</td>
<td>6.25 to 62.5</td>
<td>8 or 16</td>
<td>4 to 24</td>
<td>t + f</td>
<td>a LED 760, 850</td>
<td>PD Raw</td>
<td>n</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10 NIRScoutX</td>
<td>(NIRx), USA</td>
<td>6.25 to 62.5</td>
<td>48</td>
<td>32</td>
<td>t + f</td>
<td>a LED 760, 850</td>
<td>PD Raw</td>
<td>n</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D11 NIRSport</td>
<td>(NIRx), USA</td>
<td>6.25 to 62.5</td>
<td>8</td>
<td>8</td>
<td>t + f</td>
<td>a LED 760, 850</td>
<td>PD Raw</td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D12 BrainSight NIRS</td>
<td>(Rogue Research), Canada</td>
<td>100</td>
<td>4 to 16</td>
<td>8 to 32</td>
<td>f</td>
<td>a LED 685, 830, (808)*</td>
<td>APD Raw</td>
<td>n</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D13 FOIRE-3000</td>
<td>(Shimadzu), Japan</td>
<td>7.5 to 40</td>
<td>4 to 16</td>
<td>4 to 16</td>
<td>t</td>
<td>a LED 780, 805, 830</td>
<td>PMT OD</td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D14 OEOSpO2</td>
<td>(SpectraCure Japan)</td>
<td>1.52/12.2</td>
<td>6</td>
<td>6</td>
<td>c</td>
<td>30/25/15-40/LED 770, 840</td>
<td>PD Raw</td>
<td>y*</td>
<td>n*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D15 CW6</td>
<td>(Techlab), USA</td>
<td>10 to 50</td>
<td>4 to 48</td>
<td>8 to 32</td>
<td>f</td>
<td>a LED 690, 830*</td>
<td>APD Raw</td>
<td>n</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D16 UCL Optical</td>
<td>(University College London), Topography</td>
<td>10 to 160</td>
<td>16</td>
<td>16</td>
<td>f</td>
<td>a LED 780, 850</td>
<td>APD Raw</td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D17 Imagent</td>
<td>(ISS), USA</td>
<td>16 to 60</td>
<td>16 or 32</td>
<td>4 or 8</td>
<td>t</td>
<td>a Laser 690, 830</td>
<td>PMT OD</td>
<td>Raw</td>
<td>n</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

† van der Stuijs et al. (1998), ‡ Atsumori et al. (2009), § Everell et al. (2005).
• Data: Some devices provide raw light intensities (raw) or optical densities (OD), which can then be processed further with open source software like HomER2 (Huppert et al., 2009; PMLab, 2012) or user-implemented processing scripts. Other devices only deliver pre-computed [O₂Hb] and [HHb], which are much less suited for custom algorithms and open source tools.

• Wear: Wearable device. (y)es/(n)o: This is mandatory when using the device for research purposes. But in general without CE mark, additional approvals by the authorities are required for experiments. A star (*) indicates that the device will be CE-marked in the near future.

Technological design aspects of fNIRI

From an engineer’s point of view, CW fNIRI merely requires to switch on a NIR light source, couple the emitted light into the scalp, and measure the diffuse reflectance that re-emerges from the tissue a few centimeters distant from that source (Ferrari and Quaresima, 2012; Ferrari et al., 2004; Gicometti and Diamond, 2013; Hoshi, 2003; Strangman et al., 2002; Wolf et al., 2007). Hence, CW fNIRI instruments come in comparably simple setups, allowing specialization towards wearable, miniaturized and/or wireless applications, and can partially be built from off the shelf components at low cost (Flexman et al., 2012; Muehlemann et al., 2008; Q. Zhang et al., 2011; Vaithianathan et al., 2004). The technological aspects of the three major ingredients that are common to all CW fNIRI devices, i.e. NIR light (1) emitters, (2) detectors and (3) means to transport the light to/from the scalp, are discussed in the following.

Light sources for fNIRI instruments

Typically, two or a few more discrete wavelengths are used in NIRI, and the MBLL equations are evaluated at these selected wavelengths (Delpy et al., 1988; Kocsis et al., 2006). In broadband NIRI, however, light from a continuous portion of the spectrum is required in order to obtain the continuous absorption spectrum of the diffuse reflectance (Diop et al., 2009; Kashyp et al., 2007; Tisdall et al., 2007). To this end, broadband light sources are usually used, in combination with appropriate optical bandpass filters. For measuring only [O₂Hb] and [HHb] a higher SNR is achieved by using a few discrete, but well-chosen wavelengths (see Selection of optimum wavelengths section). Therefore this is the approach adopted by all commercial fNIRI instruments. For either approach, the emitted light needs to be from the NIR part of the spectrum in order to penetrate the tissue without being completely absorbed prior to detection (see discussion of the “optical window” in Selection of optimum wavelengths section).

In general, it is desirable to choose the radiated optical power as high as possible in order to maximize the amount of light at the detector, which leads to a higher SNR, and to be able to use longer source detector distance, which are more sensitive to deeper tissue. However, certain limitations apply. Tissue heating due to the irradiation and/or conductive heat transport from the source not only may distort the measurements, but may endanger or at least cause discomfort to the subject (Bozkurt and Onaral, 2004; Ito et al., 2000; Soraghan et al., 2008). More important, however, is proper safety for the eyes, for both, the experimenter and the subject. The power of the optical radiation reaching the brain tissue is low compared to natural exposure due to sunlight (Kiguchi et al., 2007) and poses no danger. Lasers are potentially more dangerous, because they can be pulsed and often emit a higher power than LEDs. The safety standards such as e.g. IEC 68025 or IEC 62471 and guidelines for lasers (International Commission on Non-Ionizing Radiation Protection, 2000) and LEDs (International Commission on Non-Ionizing Radiation Protection, 1997) pose limits on maximum output power (Slaney, 1997). Safety can be easily ensured by a proper design of the instrument. Commercial instruments generally implement these safety measures.

The light intensity emitted from a source usually fluctuates, and such fluctuations directly affect the noise at the detector (Zhang et al., 2001). For this reason, light sources should radiate light as invariantly as possible. This applies to drift effects, i.e., changes in the emitted intensity of wavelength that vary slowly, e.g. due to temperature effects, as well as to pure emitter noise which may originate from a noisy power supply. A careful design of the power circuitry in order to reduce noise pickup as well as the stabilization of the power supply and even cooling of the light source help to reduce emitter noise.

For fNIRI measurements at several discrete wavelengths, it is desirable to choose light sources whose radiation spectra are as sharply peaked as possible; ideally being monochromatic light at one discrete wavelength. If the emission spectrum of the source is known, however, weighted averaging approaches exist to correct the extinction coefficients (and possibly also the differential path length factors) used for the MBLL (Muehlemann et al., 2008; Wahr et al., 1996; Zhang et al., 2001).

The wavelengths available for laser diodes (LDs) are limited, i.e. between 695 nm and 775 nm it is difficult to find laser diodes at a reasonable price and 760 nm is an absorption peak of Hb. Hence not all wavelengths are selectable. As shown later in this review, the selection of wavelengths can have substantial influence on the quality of measurement data (Selection of optimum wavelengths section). For miniaturized and/or wearable fNIRI instruments, the three factors size, weight and the power consumption play an important role in the selection of a particular light source. If fiber optic light guides are used to guide the light to or from the scalp, it is desirable to choose a source that allows for efficient coupling into the fibers.

Laser diodes (LDs) and light emitting diodes (LEDs) are the most widely used types of light sources that are employed in fNIRI instruments (see Table 1). In the remainder of this paragraph, they are compared against each other based on the aspects described above. Both, LEDs and LDs are based on semiconductor technology and exploit electroluminescence through radiative recombination of electron–hole pairs in the active region of forward-biased p–n–junctions (Liu, 2005). The emitted wavelength depends on the semiconductor material, as well as on its doping characteristics. While LEDs are based on spontaneous emission and thus emit incoherent light with a large bandwidth (typically 25–50 nm), LDs are based on stimulated emission, allowing for coherent light emission with a narrower bandwidth. LDs have a narrower operating range, while the intensity of LEDs is easy to adjust.

It becomes evident from Table 2 that LDs have the benefits of narrow spectral peaks with low divergence, which allows for easy coupling of the light into fibers. However, they often come in relatively large packaging, making miniaturization more challenging. Furthermore, the danger of laser radiation for the eyes must be addressed. LEDs are generally smaller than LDs, and are often considered a valid alternative to LDs. They come in a large variety of emitting wavelengths, hence allowing for more flexibility in the wavelength selection.

<table>
<thead>
<tr>
<th>BW (FWHM)</th>
<th>Size</th>
<th>Avail. colors</th>
<th>Divergence</th>
<th>Fiber coupling</th>
<th>Cost</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDs</td>
<td>< 3 nm</td>
<td>Small</td>
<td>Limited</td>
<td>Broad</td>
<td>Possible</td>
<td>Low</td>
</tr>
<tr>
<td>LDs</td>
<td>~1 nm</td>
<td>Bulkier</td>
<td>Limited</td>
<td>Narrow</td>
<td>Easy</td>
<td>High</td>
</tr>
</tbody>
</table>
Selection of optimum wavelengths

To non-invasively determine \([\text{O}_2\text{Hb}]\) and \([\text{HHb}]\) with optimal SNR in tissue using NIWI, the optical properties of both the tissue and of the \(\text{O}_2\text{Hb}\) and \(\text{HHb}\) have to be considered.

Regarding the medium, light in the near-infrared (NIR) spectral range (~650–950 nm, ‘optical window’) can propagate relatively deeply (a few centimeters) into biological tissue mainly, because NIR light is only weakly absorbed by water, hemoglobin, collagen and proteins (see Fig. 2). Light below 650 nm is too strongly absorbed by mainly hemoglobin and above 950 nm too strongly by water. In the spectral range of the ‘optical window’, \(\text{O}_2\text{Hb}\) and \(\text{HHb}\) have different minima and maxima in their absorption spectra, and an isosbestic point at ~800 nm (Zijlstra et al., 2000), where \(\text{O}_2\text{Hb}\) and \(\text{HHb}\) have the same absorption coefficient (Fig. 2). Although other substances have higher absorption coefficients in this range, they are only present at relatively low concentrations and consequently \(\text{O}_2\text{Hb}\) and \(\text{HHb}\) can be regarded as the main absorbers. Thus, the NIR spectral range is well suited to determine changes in \([\text{O}_2\text{Hb}]\) and \([\text{HHb}]\) non-invasively.

The selection of the specific wavelengths suited best to determine \([\text{O}_2\text{Hb}]\) and \([\text{HHb}]\) is a mathematical optimization problem which depends on a complex interplay between different variables, mainly (i) the number of wavelengths used, (ii) the number and type of chromophores considered, (iii) the model of the background medium (e.g. homogenous vs. non-homogenous, number of layers), and (iv) the mathematical approach to solve the optimization problem.

So far different methods have been developed for selecting the optimum wavelengths based on theoretical or experimental approaches. In the following, the different approaches and their results are briefly reviewed. An overview about the recommended wavelengths is given in Fig. 3.

Two wavelengths

Using an error propagation approach, Yamashita et al. (2001) showed that with the wavelength pair 664 nm and 830 nm \([\text{O}_2\text{Hb}]\) or \([\text{HHb}]\) can be determined twice or six times, respectively, more precisely compared to 780 nm and 830 nm (Yamashita et al., 2001) The latter pair is often used for NIWI. Yamashita et al. (2001) therefore recommend using 830 nm and a second wavelength in the range <780 nm, which is in agreement with other findings. Strangman et al. (2003) used a Monte Carlo simulation and considered three types of crosstalk (i.e. between \([\text{O}_2\text{Hb}]\) and \([\text{HHb}]\), from species-dependent pathlength factors, and between two different activation regions) in their optimization method. They showed that (i) 830 nm should be paired with 690 or 760, as well as that (ii) the wavelength range 770–800 nm provides only poor oxygenation information. Sato et al. (2004) tested empirically (on four subjects performing different cognitive and motor tasks) which of the four wavelengths 678, 692, 750 and 782 nm is the best combination with 830 nm to obtain an optimal SNR for both \([\text{O}_2\text{Hb}]\) and \([\text{HHb}]\). 692 nm and 830 nm provided the highest SNR. Okui and Okada (2005) demonstrated in a Monte Carlo simulation by minimizing the crosstalk between \([\text{O}_2\text{Hb}]\) and \([\text{HHb}]\), that the optimal wavelength range for pairing with 830 nm for the dual-wavelength setup is between 690 nm and 750 nm. Funane et al. (2009) concluded from their theoretical analysis that the SNR is at its maximum when both ends of the range of 659–900 nm were used. In addition, they demonstrated that the SNR decreases when changes in the concentration of \(\text{CtOx}\) (i.e. \([\text{CtOx}]\)) are included in the analysis. By using a Monte Carlo simulation, Kawaguchi et al. (2008) demonstrated the usefulness of the wavelength pair 690 nm and 830 nm in reducing the crosstalk between \([\text{O}_2\text{Hb}]\) and \([\text{HHb}]\).

Further investigations showed that the 830 nm wavelength may not be the optimal wavelength either. Uludağ et al. (2004b) concluded from their theoretical analysis of crosstalk between \([\text{O}_2\text{Hb}]\) and \([\text{HHb}]\) and separability (defined as a measure for the influence of physical noise on the \([\text{O}_2\text{Hb}]\) and \([\text{HHb}]\)) that for a dual-wavelength NIWI instrument, (i) not both wavelengths should be >780 nm, and (ii) the crosstalk is low and the separability high when one of the wavelengths is >730 nm and the other <720 nm. Correia et al. (2010) performed a detailed analysis of the two optimum wavelengths for NIWI by using a three layer model for the optical medium and three conditions for the optimization process: good separation between (i) absorption and scattering (i.e. maximum of the residual norm), (ii) \([\text{O}_2\text{Hb}]\) and \([\text{HHb}]\) (i.e. minimum of the condition number), and (iii) excellent overlap between the sensitivity profiles of the wavelength-dependent light paths in the medium (i.e. small sum of squared differences between the sensitivity profiles). The analysis revealed that the optimum wavelength pair is 704 ± 7 and 887 ± 12 nm.

![Absorption spectra](image)

Fig. 2. Absorption spectra (natural logarithm base) for different chromophores present in human tissue. Shown are the spectra for \(\text{O}_2\text{Hb}, \text{HHb}, \text{proteins}, \text{water}, \text{collagen}, \text{fat} \) and \(\text{cytochrome oxidase (CtOx)}\) in the region from 100 nm to 10,000 nm. The spectra are given with respect to the specific concentration in mM.

Three and more wavelengths

By simulating a medium with O2Hb, HHb and H2O as chromophores and by optimizing the residual norm and the condition number, Corlu et al. (2003) showed that when using four wavelengths, the optimum ones to separate between O2Hb, HHb and H2O are 650 ± 2, 722 ± 1, 884 ± 2 and 930 ± 2 nm. In a follow-up study, Corlu et al. (2005) added lipid as a fourth chromophore in the simulation and concluded that the optimum five wavelengths are 650 ± 3, 710 ± 1, 865 ± 15, 912 ± 4 and 928 ± 4 nm. In addition, they showed that when only assuming O2Hb, HHb as chromophores in the medium and also allowing for scattering changes, the three optimal wavelengths are 650 ± 2, 716 ± 4 and 902 ± 16 nm. Using a similar simulation and analysis as Corlu et al. (2003), Eames et al. (2008) found 650, 736, 874 and 930 nm to be the optimum four wavelengths for determining O2Hb, HHb and H2O concentrations. Correia et al. (2010) improved the optimization approach used by Corlu et al. (2003, 2005) by incorporating a third condition in the optimization constraints (i.e., taking into account the interrogated volume of the light) and showed that for a simulated three layered medium with O2Hb and HHb as chromophores in the medium and also allowing for scattering changes, the three optimal wavelengths are 680 ± 5, 725 ± 10 and 877 ± 12 nm or the four wavelengths 685 ± 7, 719 ± 9, 731 ± 8 and 873 ± 9 nm are optimal. Another approach for optimal wavelength selection was presented by Zhu et al. (2012). They measured cerebral changes in [O2Hb], [HHb] and [CtOx] directly on piglets using a multi-spectral method and determined the optimal three or four wavelengths that minimize the normalized root mean square residual between the values determined by the multi-spectral method and by using only a finite number of wavelengths. They found that the three wavelengths 782, 832 and 884 nm, and the four wavelengths 786, 807, 850 and 889 nm are optimal.

In conclusion, the works mentioned in the previous sections show that (i) the optimum wavelength selection depends on the specific type of analysis performed and the assumptions made; (ii) for a two-wavelength fNIRI device the optimum wavelength in combination with 830 nm should be < 780; (iii) the optimum wavelength pair in general for a two-wavelength fNIRI device seems to be 704 ± 7 + 887 ± 12 nm (Correia et al., 2010), and (iv) different optimum wavelength combinations were proposed for more than two wavelengths, with the analysis performed by Correia et al. (2010) appearing to be the one based on the most realistic modeling approach so far, and the analysis of Zhu et al. (2012) seeming to be the most innovative one. Concerning the mathematical methods to determine the optimum wavelengths, it has to be stressed that unfortunately, to the best of our knowledge, none of them included superficial layers such as skin and scalp in their model. Since it was shown that the dark pigmentation of the hair and also the hair follicle strongly absorb light in the NIR wavelength range (McIntosh et al., 2010; Pringle et al., 1999), the optimum selection of wavelengths also has to take account of this issue in the future. Thus, the recommendations for optimum wavelength selection published so far should be regarded with reservation.

The discrepancy between the determined optimal values by Yamashita et al. (2001) and Correia et al. (2010) demonstrates that the type of optimization approach has a strong influence on the results.

One approach to circumvent the need for a selection process of optimum wavelengths could be to use the complete NIR spectrum rather than just a finite number of wavelengths to determine the concentration changes of chromophores. Devices and methods using this FNIRI multi-spectral (or broadband) approach are under development (e.g. Diop et al., 2009; Pucci et al., 2010; Srinivasan et al., 2007; Tachtsidis et al., 2008b, 2011, 2012; Xu et al., 2005). That the usage of the different spectral fitting methods has an effect on the measured concentration changes has been shown by Schelkanova and Toronov (2010). However, the multi-spectral approach is associated with two drawbacks, i.e. increased computational complexity and the need for reduced incident light power (compared to a normal FNIRI device) since light with a multi-spectrum has a higher total power than light with a restricted wavelength range. Theoretically, the highest SNR can be achieved by sampling at the two optimal wavelengths as often as possible.

Photodetectors for FNIRI instruments

Most photodetectors in photonic applications are based on the photoelectric effect (either internal or external), i.e. a photon generates free charge carriers, which in turn are detected as an electric signal (Liu, 2005).

The external photoelectric effect means that a photon frees an electron from the photocathode surface. In a photomultiplier tube
internal signal amplification can be minimized by carefully shielding the detector from background noise. Shot noise is unavoidable; however, it is proportional to the square root of the number of photons detected. The more light enters the detector in a given time window, the more shot noise, i.e., due to their stochastic non-uniform temporal distribution (Liu, 2005). Without internal amplification, the signal-to-noise ratio is low and the sensitivity to ambient light exposure and magnetic fields is high. APDs require stabilized power supplies and are often cooled (Liu, 2005). APDs are faster than PDs and could be modulated with frequencies exceeding 100 MHz (Strangman et al., 2002), PMTs, while not very commonly used in fNIRI, represent the gold standard for photodetectors in terms of sensitivity, which allows for single photon counting. They exhibit large gains (up to 107) and high speeds similar to APDs (Strangman et al., 2002). The dynamic range of PDs is in the range of 60 dB, comparable to APDs but lower than that of PDs (Strangman et al., 2002). Since the gain of PMTs is very sensitive to the (rather high) supply voltage, it must be stabilized (Liu, 2005). Furthermore, PMTs are large, and sensitive to magnetic fields, as well as highly vulnerable to exposure to ambient light. A possible alternative to PMTs was recently discovered in silicon photomultipliers (SiPMs), which essentially consist of APDs that operate in Geiger mode and hence exhibit photon counting capabilities (Renker, 2007). Being semiconductor-based devices, they come in small packages, require lower operating voltages and are not susceptible to ambient light exposure or magnetic fields (Renker, 2007). Due to their practical advantages compared to PMTs, which we recently also started to develop with own experiments (Zimmermann et al., 2013a), we expect further developments employing SiPMs in the field of fNIRI instrumentation.

Probe design

To transfer the light generated by the emitter to the scalp of the subject and the reflected light back to the detector, two options are available. The sources and detectors can be placed directly onto the scalp, or a fiber optic cable can be used to transmit the light. Fiber optic cables are preferred in many fNIRI setups due to their flexibility and ability to handle large numbers of channels simultaneously. The cables are typically made of plastic or glass and are designed to maintain a consistent and stable optical path. Various types of fiber optic cables are available, such as single-mode, multimode, and polarization maintaining fibers.

Table 3

<table>
<thead>
<tr>
<th>PD</th>
<th>None</th>
<th>High</th>
<th>Small</th>
<th>Medium</th>
<th>Good</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Small</td>
<td>100 V</td>
<td>Fast</td>
<td>Medium</td>
</tr>
<tr>
<td>PMT</td>
<td>Large</td>
<td>Moderate</td>
<td>Bulky</td>
<td>1 kV</td>
<td>Fast</td>
<td>Medium</td>
</tr>
</tbody>
</table>

* Susceptibility to ambient light exposure and/or magnetic fields.

(PMT), this electron is accelerated by a strong electric field, such that its kinetic energy is high enough to knock out several secondary electrons from the surface of dynodes. This process is repeated in a cascade of dynodes, leading to a successive multiplication of the carriers, and hence results in high gains in the order of 10^5 to 10^7 (Liu, 2005).

The internal photoelectric effect means that the absorption of a photon by a semiconductor junction diode results in an electron-hole pair. These carriers are responsible for a photocurrent, which is again detectable as an electric signal. The photodiode (PD) is a prominent example of a photodetector that is based on the internal photoelectric effect. It has no internal signal amplification, and can be operated in either the photoconductive mode or the photovoltaic mode. In the photoconductive mode, a reverse voltage is applied across the junction and the resulting photocurrent is measured across a relatively small load resistance, resulting in an output voltage that is linear with the incident optical power. In the photovoltaic mode, no bias is applied and the load resistance is large, such that the photocurrent is negligibly small, resulting in a logarithmic response to the optical power (Liu, 2005). This can be of interest in fNIRI measurements, as the choice of different source detector separations can pose high demands on the dynamic range of the detector and the subsequent amplifier circuitry, which can be met by the logarithmic scale of the diode output. However, circuits operating in photovoltaic mode are much slower compared to photoconductive mode, because voltage changes are due to the tiny photocurrent generated by the photodiode divided by the input capacitance of the ensuing amplifier circuit.

Another example for a device that is based on the internal photoelectric effect is the avalanche photodiode (APD), which is, together with PDs, among the most widely used photodetectors in fNIRI instruments (see Table 1). By applying a large electric field across the APD junction, the charge carriers that are generated by photon absorption are accelerated and gain a kinetic energy high enough to generate more carriers through impact ionization, which in turn are accelerated and generate more carriers, etc. This leads to an avalanche type multiplication of carriers similar to a PMT which gives the APD its name and which results in an internal current amplification in the range of few hundred times (Liu, 2005).

Light sensors based on charge-coupled devices (CCD) are yet another group of photodetectors that make use of the internal photoelectric effect (Liu, 2005). CCDs are commonly used in broadband NIR as part of the spectrometers needed to record the continuous absorption spectrum of the diffuse reflectance (Cope et al., 1989). Unlike single PDs or PMTs, the CCD sensor provides spatial information, i.e. it gives information about the distribution of the light intensity in an array of pixels (Janesick, 2001). In order to obtain a continuous spectrum, the incoming light is dispersed, normally by a diffraction grating. By measuring the intensity of the thereby spatially separated spectral components of the light on a CCD camera, the continuous spectrum of the diffuse reflectance is obtained (Cope et al., 1989).

In photodetector systems, there are mainly three different types of noise, i.e. shot noise, dark current and thermal noise. Shot noise is based on the quantum nature of the photons that enter the detector as well as the generated carriers, i.e. due to their stochastic non-uniform temporal distribution (Liu, 2005). Without internal amplification, the photonic shot noise power is proportional to the square root of the number of incident photons, as is the signal-to-shot-noise ratio. Thus, the more light enters the detector in a given time window, the more precise are the measurements. Shot noise is unavoidable; however, it can be minimized by carefully shielding the detector from background radiation (opaque cover and/or NIR bandpass filters). In devices with internal signal amplification, the excess shot noise describes the fluctuations that are due to the random multiplication effects inside the detector (Liu, 2005). The dark current is the current measured in dark conditions (no photons), e.g. due to thermal generation of electron-hole pairs in PDs. It can be reduced by cooling the device. Thermal noise is generally present in resistors internal and external to the detector and is due to Brownian motion of electrons. In detectors with internal gains, the photonic and dark current shot noise is amplified together with the signal; however, the thermal noise is typically small compared to the signal and becomes negligible.

The output signal of a detector is in general amplified and filtered prior to analog–digital conversion. In photodetectors without internal gain, the design and the component selection of the subsequent pre-amplifier circuitry must be carried out carefully in order to reduce noise pickup in circuit paths, wires, active components, etc. Detectors with internal gain reduce the requirements of the preamplifiers components in terms of noise.

The three most important photodetectors used in fNIRI instruments—namely PD, APD and PMT—are compared in the following (Table 3).

Photodiodes have a high dynamic range in the range of 100 dB (Strangman et al., 2002), are easy to use since they usually do not need stabilized supply voltages or cooling, and come in small packages. Their speed is in the range of 100 MHz (Strangman et al., 2002), and they are not susceptible to magnetic fields, such as in fMRI scanners and robust to ambient light exposure. PDs, however, have no internal signal amplification; hence need low-noise preamplifiers that must be designed carefully. APDs have a moderate gains in the order of 100 (Liu, 2005), a dynamic range of 60 dB (Strangman et al., 2002) and come in small packages. They are robust to ambient light exposure and not sensitive to magnetic fields. Their operating voltage is in the order of tens to hundreds of volts. Due to the dependency of the internal gain on temperature and bias voltage, APDs require stabilized power supplies and are often cooled (Liu, 2005). APDs are faster than PDs and could be modulated with frequencies exceeding 100 MHz (Strangman et al., 2002), PMTs, while not very commonly used in fNIRI, represent the gold standard for photodetectors in terms of sensitivity, which allows for single photon counting. They exhibit large gains (up to 10^7) and high speeds similar to APDs (Strangman et al., 2002). The dynamic range of PMTs is in the range of 60 dB, comparable to APDs but lower than that of PDs (Strangman et al., 2002). Since the gain of PMTs is very sensitive to the (rather high) supply voltage, it must be stabilized (Liu, 2005). Furthermore, PMTs are large, and sensitive to magnetic fields, as well as highly vulnerable to exposure to ambient light. A possible alternative to PMTs was recently discovered in silicon photomultipliers (SiPMs), which essentially consist of APDs that operate in Geiger mode and hence exhibit photon counting capabilities (Renker, 2007). Being semiconductor-based devices, they come in small packages, require lower operating voltages and are not susceptible to ambient light exposure or magnetic fields (Renker, 2007). Due to their practical advantages compared to PMTs, which we recently also started to develop with own experiments (Zimmermann et al., 2013a), we expect further developments employing SiPMs in the field of fNIRI instrumentation.

Table 3

<table>
<thead>
<tr>
<th>Gain</th>
<th>Dyn. range</th>
<th>Size</th>
<th>V_{op}</th>
<th>Speed</th>
<th>Robustness</th>
<th>Susceptibility*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>None</td>
<td>High</td>
<td>Small</td>
<td>1 V</td>
<td>Medium</td>
<td>Good</td>
</tr>
<tr>
<td>APD</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Small</td>
<td>100 V</td>
<td>Fast</td>
<td>Medium</td>
</tr>
<tr>
<td>PMT</td>
<td>Large</td>
<td>Moderate</td>
<td>Bulky</td>
<td>1 kV</td>
<td>Fast</td>
<td>Medium</td>
</tr>
</tbody>
</table>

* Susceptibility to ambient light exposure and/or magnetic fields.
The question how to best arrange sources and detectors is not easy to answer. The aims of such an arrangement are to obtain a high image resolution, high sensitivity, accurate estimation of the chromophore concentrations, an effective elimination of the influence of superficial tissue layers and systemic physiological changes.

Early instruments were based on evenly spaced arrangements of sources and detectors with uniform source detector distance for all channels (e.g. Franceschini et al., 2003; Maki et al., 1995; Wolf et al., 2002). These approaches employed a simple backprojection algorithm, which offered a resolution in the order of the average distance between the midpoints of light bundles (Yamamoto et al., 2002). This approach yielded a map of cortical activity with a low quantitative accuracy and had the disadvantage of a high sensitivity to superficial layers of tissue (Boas et al., 2004). It is based on the assumption that changes only occur in the brain and not systemically.

An improvement to this approach was to include at least one short source detector distance in the order of 5 mm. Since the signals at short source detector distances are mostly affected by superficial tissue and hence by systemic physiological changes, this was an attempt to reduce the influence of these undesirable components (see Methods to separate different components in fNIRI signals section).

The next step was to move to tomographic approaches, i.e. an image reconstruction in three dimensions. This enables to remove the influence of superficial tissue, to obtain a higher sensitivity to deeper tissue and more accurate localization and quantification of the brain activity. It requires, however, that an instrument allows to measure at several different source detector distances with overlapping light paths and inherently means that the instrument needs a high dynamic range (Boas et al., 2004).

Culver et al. (2001) simulated the influence of the density of sources and detectors on the image resolution. They found that resolution depends on the SNR of the measurement, the depths of the object and density of sources and detectors. In particular, the higher the density of optodes, the higher is the resolution. This relationship is limited by the SNR of the instrument, i.e. a low SNR reduces the resolution due to noise. The deeper an object is, the lower is the achievable spatial resolution. They also tested a transmission geometry, which enabled higher resolution in deep tissues compared to a reflection geometry.

Since it is impossible to shine light through the whole adult human head, only sensors with reflection geometry are feasible for measuring brain activity. Boas et al. (2004) analyzed different reflection source/detector arrangements and found that including two distances and overlapping light paths increases the image resolution and localization accuracy. These simulations showed that a high dynamic range is required to implement this approach in an instrument. They favored the arrangement of sources/detectors in a hexagonal geometry, because it has lower requirements for the dynamic range compared to a rectangular geometry. Subsequently an instrument with the required specifications was built and the simulations were verified and indeed the tomographic approach led to a higher resolution and agreement with fMRI data compared to the backprojection approach (Joseph et al., 2006).

Tian et al. (2009) studied 6 different geometric arrangements of sources and detectors in a phantom experiment. They found that the most important factor affecting the resolution is the measurement density, i.e. the number of different light bundles interrogating a specific volume. The higher this measurement density is the higher is the image resolution that can be achieved. In addition, they showed that the image resolution and SNR have an asymptotic behavior with respect to the number of overlapping light paths, i.e. at a certain level the improvement becomes quite small which means there is an optimum density for the system complexity.

Dehghani et al. (2009b) simulated using NIRFAST high density arrays of fNIR. They found that an increase in the number of different source detector distances enables higher depth sensitivity, i.e. sensitivity to brain tissue at greater depths than 20 mm. This would enable
the detection of activation even in sulcal folds. From the instrumentation point of view this means that an extremely high dynamic range is required to implement these simulation results in a real system.

Analysis of fNIRI signals

Approaches to determine the [O2Hb] and [HHb]

There are different algorithms to convert raw light intensity data into [O2Hb], [HHb] and the total hemoglobin concentration ([Hb]), i.e. the sum of [O2Hb] and [HHb]) or tissue oxygen saturation (SO2). The most common ones in fNIRI are the MBLL (Delpy et al., 1988) and multi-distance (MD) approaches, making use of several source–detector distances.

In the following we will discuss properties and assumptions of the different approaches. Independent of the approach when using CW devices it is not possible to determine absolute concentrations for O2Hb and HHb, and thus tHb, because μv cannot be measured directly. All approaches are assuming a homogenous tissue for the investigated area, which is not true for investigations of functional brain activity and this leads to errors in quantification, but the qualitative trend of the concentration change normally is still correct and therefore this approach is used in fNIRI (see further discussion below in Modified Beer–Lambert Law (MBLL) and Methods to separate different components in fNIRI signals sections). These approaches also require that μv is much larger than μc which generally holds true for tissue.

The MBLL furthermore assumes that μv does not vary with time and that changes in detected light intensity can be mainly attributed to changes in [O2Hb] and [HHb]. These assumptions are similarly true for MD approaches, which are explained below. MD algorithms can give a reliable and stable measurement for the SO2, which was clinically applied e.g. for monitoring premature neonates, as their brain is very sensitive to both too high and too low oxygen levels in the brain (Wolf et al., 2012). The MBLL and a short notice on its extensions using multi-spectral measurements will be discussed first (Modified Beer–Lambert Law (MBLL) section), while MD based approaches enable a depth resolution and are therefore discussed in Multivariate methods of type 1 section.

Modified Beer–Lambert Law (MBLL)

The MBLL (Delpy et al., 1988) extends the Beer–Lambert law by introducing a scattering dependent light intensity loss parameter, here denoted by C. The law describes the loss of light intensity (I) in tissue (optical density OD, also sometimes attenuation A, unitless) as a function of the chromophore concentrations (c, units [M]), molar extinction coefficients (ε, [M$^{-1}$cm$^{-1}$]), not to be mistaken with the molar absorption coefficient α = ln(10)ε or the absorption coefficient μv = αε, differential path length factor (DPF, unitless; accounts for the increased distance the light travels due to μv*), source–detector separation (d, [cm]) and G (unitless):

$$OD(t, \lambda) = -\log_{10} \left(\frac{I(t, \lambda)}{I_0(t, \lambda)} \right) = \sum_{\lambda} \epsilon_i(\lambda) \Delta c_i(t) \cdot DPF(\lambda) \cdot d + G(\lambda). \quad (1)$$

The index i denotes all investigated chromophores, commonly [O2Hb] and [HHb] and I0 denotes the intensity of the emitted light. Also note that in Eq. (1) we use the base 10 logarithm (i.e. $I = I_010^{-\alpha}$) and therefore use molar extinction coefficients, rather than the absorption coefficients which are associated with the natural logarithm. Both represent the level of absorption per concentration (mM/mM) and per length (cm) but differ by a scaling factor of ln(10) (Matcher et al., 1995a; UCL, 2005). Assuming that the change in scattering is small compared to the change in absorption, G can be assumed to be time-invariant. Hence it can be neglected when determining the change in optical density ($\Delta OD(t, \lambda) = OD(t_1, \lambda) - OD(t_0, \lambda)$) for a time point t_1 against an initial time point t_0. In addition, we assume that the emitted intensity I_0 is constant and therefore this term cancels out.

$$\Delta OD(t, \lambda) = -\log_{10} \left(\frac{I(t_1, \lambda)}{I(t_0, \lambda)} \right) = \sum_{\lambda} \epsilon_i(\lambda) \Delta c_i \cdot DPF(\lambda) \cdot d, \quad (2)$$

where $\Delta c_i = c_i(t_1) - c_i(t_0)$ is the temporal change in molar concentration. The MBLL is valid for a homogenous change in [O2Hb] and [HHb] in homogenous tissue. As mentioned above, this approximation does not hold true for measurements of the head, as discussed by e.g. (Boas et al., 2001; Obrig and Villringer, 2003). The fact that the head is inhomogeneous is not a problem, because the inhomogeneity remains constant and is mostly covered by the constant G, which cancels out for measuring concentration changes. The fact that the concentration change in O2Hb and HHb is not homogenous, i.e. it occurs only in the brain and not in other tissues such as skin and skull, leads to an error in quantification, i.e. the MBLL strongly underestimates the size of the changes in [O2Hb] and [HHb]. In principle this error can be corrected, by taking partial differential pathlengths into account (Hirao et al., 1993), but usually this correction is not performed, because the trend of the signals is correct and quantification is not important in brain research, i.e. it is sufficient to detect, whether an activation is present or not, where the activation is occurring and signals can certainly be compared between different locations or different stimulations paradigms.

The values for c and DPF can be found in the literature (e.g. Duncan et al., 1995; Matcher et al., 1995a). The DPF was found to be age, gender and wavelength dependent and varies between subjects (Duncan et al., 1996; Essenpreis et al., 1993) and different tissues (Duncan et al., 1995). For example the average DPF for the adult head for 100 subjects given by Duncan et al. is 6.53 ± 0.99, i.e. 15% variability between subjects. Since it is inversely proportional to the concentration change this will lead to an error of 15% in the estimation of the concentration change for an individual subject. This error could be corrected by applying time resolved instrumentation that is able to measure the DPF or by broadband spectroscopy, which is able to estimate the optical pathlength (Matcher et al., 1994). But the use of time resolved instrumentation is more expensive and complicated and quantification is not so important. In addition, the large majority of research is performed in groups of subjects/patients and results are presented in terms of group averages. In this case this error is averaged out and no longer relevant. Since there are different values for the DPF in the literature, it is necessary to state in each publication, which DPF values were applied. This also enables comparability between publications.

To finally obtain the hemoglobin concentration changes, Eq. (2) is evaluated at 2 wavelengths and the resulting system of equations solved for Δc i.e. $\Delta [O2Hb]$ and $\Delta [HHb]$:

$$\begin{bmatrix} \Delta [HHb] \\ \Delta [O2Hb] \end{bmatrix} = \begin{bmatrix} \epsilon_{[HHb],1} & \epsilon_{[O2Hb],1} \\ \epsilon_{[HHb],2} & \epsilon_{[O2Hb],2} \end{bmatrix}^{-1} \begin{bmatrix} \Delta OD(t, \lambda_1) / DPF(\lambda_1) \\ \Delta OD(t, \lambda_2) / DPF(\lambda_2) \end{bmatrix} \quad (3)$$

Instead of integrating the wavelength dependent DPF and the distance into OD matrix, it is also common to include these parameters in the extinction coefficient matrix and to state the resulting numbers, e.g. Matcher et al. (1995a). These numbers are only true for a specific instrument with specific wavelengths. In fact, even though a lot of instruments use the MBLL, the implementation differs from instrument to instrument. The MBLL can also be derived in a slightly different form from the diffusion approximation (Sassaroli and Fantini, 2004).

The time-differential MBLL approach can be extended using a multi-spectral approach. In this approach the OD difference is calculated between two wavelengths (measurement wavelength — reference wavelength). This was used e.g. to measure changes in cytochrome oxidase redox state in a rat brains without knowledge of its absorption spectrum (Hoshi et al., 1997). This approach is also known as SAPPORO
Methods to separate different components in fNIRI signals

The signals measured by fNIRI and other modalities (e.g. fMRI) are contaminated with signal components that are not associated with functional brain activity, which may mask the brain activity. For this reason, fNIRI (like fMRI) studies usually include repetitions of stimulations. To improve the SNR it would be desirable to remove signal components that are not associated with brain activity. An effective removal increases the SNR, and enables to reduce the number of subjects and repetitions and the measurement time, possibly to a single trial. In the following we will discuss methods to remove undesired signal components.

Classification of signal components

The non-stationary fNIRI signals, i.e. [O$_2$Hb], [HHb], [tHb] and STO$_2$, are a combination of (i) evoked neurovascular coupling by a stimulus/task, (ii) non-evoked (i.e. spontaneous) neurovascular coupling, and (iii) processes that are not induced by neurovascular coupling, i.e. evoked and non-evoked systemic physiological processes (‘physiological interference’ or ‘systemic interference’). In general, the changes present in fNIRI signals recorded on a human head are composed of different components that can be classified according to three aspects: (i) source (intracerebral vs. extracerebral), (ii) stimulus/task relation (evoked vs. non-evoked), and (iii) cause (neuronal vs. systemic).

According to the anatomical and physiological constraints, this classification leads to six signal components (SC1–SC6) that are, in principle, present in every recorded fNIRI signal (see Table 4).

Components caused by cerebral neuronal activity (SC1, SC4). Functional brain activity (SC1) in fNIRI signals originates from evoked local neurovascular coupling (Buxton, 2012; Devor et al., 2012) and is directly related to functional brain activity (see Table 4). The signal changes associated with this component are small (i.e. –0.5 μM for [O$_2$Hb], –0.2 μM for [HHb] (Wolf et al., 2002)) in relation to the overall variability of the fNIRI signals (in general ~1 μM for [O$_2$Hb] as well as [HHb]). The component is generally termed “stimulus/(or task)-evoked hemodynamic response” and its extraction from the fNIRI signals is of primary interest in most fNIRI studies. In order to designate this component more precisely we suggest using the term “neuronal hemodynamic response” (associated with SC1) in contrast to “systemic hemodynamic response” (SC2–3). A typical neuronal hemodynamic response is shown in Fig. 5a. Fig. 5b visualizes the physiological processes involved, according to (Buxton, 2012; Devor et al., 2012).

As a second component (SC4), spontaneous brain activity (i.e. non-evoked) is also associated with neurovascular coupling and contributes to the variability of fNIRI signals. This component can be used to assess the so called “resting-state functional connectivity” of the brain (Greicius et al., 2009; Raichle, 2009; Sasai et al., 2012; White et al., 2009), which can be directly measured using electroencephalography (EEG) or magnetoencephalography (MEG), and indirectly using fNIRI, magnetic resonance imaging (fMRI) or positron emission tomography (PET). The type of functional connectivity measured using EEG or MEG (i.e. the ‘neuronal functional connectivity’) should not be confused with this connectivity-type measured using fNIRI, MRI or PET (i.e. the ‘vascular functional connectivity’), as highlighted by Wolf et al. (2011).

Components caused by cerebral and extracerebral systemic activity (SC2–3, SC5–6). The reflection geometry commonly used in fNIRI is very sensitive to the extracerebral compartment of the head (i.e. scalp skin, subcutaneous tissue, aponeurosis, connective tissue, periosteum, cranium, meninges (dura mater, arachnoid mater, pia mater), cerebrospinal fluid (CSF) (Ellis, 2012)) since the light is both introduced and collected at the surface of the scalp. For a single source–detector arrangement, it was shown the light intensity is ~10–20 times (depending on the model for estimating the hemodynamic signals and the SDS) more sensitive to the extracerebral compartment compared to the cerebral compartment (Al-Rawi et al., 2001; Liebert et al., 2004). The tissue-specific energy of light absorbed in the head by using a 3 cm SDS was investigated by Haessler et al. (2011) by a Monte Carlo simulation based on three-dimensional segmented structural MRI data. They showed that the main part of the energy is absorbed by the extracerebral compartment (scalp: ~76%, skull: ~20%, CSF: ~0%). Table 4: Classification of main components present in fNIRI signals. SC#: signal component #.

<table>
<thead>
<tr>
<th>Component</th>
<th>Neuronal</th>
<th>Systemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC1 Cerebral (neurovascular coupling)</td>
<td>Functional brain activity</td>
<td>Functional activity type 1 (e.g. changes in blood pressure, PaCO$_2$, cerebral blood flow/volume)</td>
</tr>
<tr>
<td>SC2 Extracerebral</td>
<td>Systemic activity type 2 (e.g. changes in blood pressure, skin blood flow/volume)</td>
<td>Systemic activity type 3 (e.g. heart rate, respiration, Mayer waves, very low frequency oscillations)</td>
</tr>
<tr>
<td>SC3 Cerebral (neurovascular coupling)</td>
<td>Spontaneous brain activity</td>
<td>Systemic activity type 4 (e.g. heart rate, respiration, Mayer waves, very low frequency oscillations)</td>
</tr>
</tbody>
</table>

Table 4: Classification of main components present in fNIRI signals. SC#: signal component #.
Fig. 5. (a) Typical evoked changes in cerebral oxygenation and hemodynamics due to an increase in brain activity. (b) Overview of the cerebral hemodynamic and oxygenation changes and their effect on the NIRI-derived signals in case of an increased neural (brain) activity. [O2Hb]: oxyhemoglobin concentration, [HHb]: deoxyhemoglobin concentration and [Hb]: total hemoglobin concentration.

A relatively large amount of the variability in fNIRI signals is not primarily stimulus/task-related but originates from changes in hemodynamics or vasomotion (i.e. variations in the blood vessels diameter) associated with spontaneous hemodynamic oscillations in different frequency bands as such as the cardiac signal (i.e. heartbeat, ~1 Hz), respiration (~0.3 Hz), low frequency (LF) (Mayer wave) (~0.1 Hz) and very low frequency (VLF) oscillations (~0.1 Hz) of different physiological origin (Cheng et al., 2012; Julien, 2006; Obrig et al., 2000a; Phillip et al., 2012; Reinhard et al., 2006; Tong et al., 2011; Toronov et al., 2000; Trajkovic et al., 2011). Also oscillations in the CSF (Droste and Krauss, 1997; Feinberg and Mark, 1987; Friese et al., 2004; Gupta et al., 2010; Kao et al., 2008; Strik et al., 2002) and even during a simple static handgrip task (Giller et al., 2000) may contribute to the non-evoked signals. Spontaneous hemodynamic oscillations are present in the cerebral and extracerebral compartment (Habermehl et al., 2012b). Although there are many studies demonstrating the systemic origin of the spontaneous hemodynamic oscillations, Hoshi et al. (1998) found that these oscillation are also related to neuronal brain activity.

Despite the fact that the spontaneous hemodynamic oscillations (i.e. heartbeat, respiration, LF, and VLF) are not stimulus/task-evoked themselves, their characteristics (i.e. amplitude, frequency, phase) can be modulated by the stimulus/task to some degree. For example, it was shown that the amplitude of LF and VLF oscillations depend on the activity state (rest vs. task) (Obrig et al., 2000a), sleep stage (Näsi et al., 2011), body posture (Tachtsidis et al., 2003, 2004), or age of the subject (Peng et al., 2008; Safonova et al., 2004). Thus, although these oscillations arise spontaneously, their stimulus/task-evoked modulation capability leads to the conclusion that they may also be part of the systemic activity type 1 and type 2 (SC2–3). Toronov et al. (2000) even concluded that the activation signals detected by fNIRI and fMRI are mainly due to a synchronization of spontaneous oscillations with the stimulation rhythm.

Challenges for classification and separation of the signal components

The major challenge in separating the different signal components in fNIRI signals is the fact that all the evoked and non-evoked, neuronal and systemic hemodynamic changes do not take place as separate and non-influenced processes but form an interactive network of interlinked processes. E.g. this is demonstrated by the findings that the amplitude variations of the spontaneous LF oscillation can be caused by frequency variations of respiration. Respiration with the
same frequency as the LF oscillation (0.1 Hz) leads to a resonance amplification (Cheng et al., 2012; Diehl et al., 1995; Obrig et al., 2000a; Reinhard et al., 2006) and the choice of the length of the stimulation period influences the amplitude substantially (Tornov et al., 2000). Furthermore the LF oscillation seems to be interconnected with stimulus/task-evoked functional brain activity (i.e. hemodynamic responses) (Wolf et al., 2011), which led the authors to the conclusion that “functional cerebral hemodynamics can also be considered as a nonlinear synchronization phenomenon”—a conclusion that questions that the measured hemodynamic changes are caused by functional brain activity and proposes that they are caused by stimulus/task-related modulation of spontaneous hemodynamic oscillations.

Based on these findings, the classification and separation of fNIRI signals is a challenging task. The presented classification scheme (Table 4) should be regarded as generalized guidance in order to classify and assess the different fNIRI signal processing methods developed so far.

Mathematical and technical methods to separate the signal components

Methods developed to date to separate the different components in fNIRI signals can be classified into three categories: (i) univariate methods, (ii) multivariate methods of type 1, and (iii) multivariate methods of type 2. Whereas the univariate methods use only one single signal, the multivariate ones use more than one to perform the signal separation. The multivariate methods can be distinguished into two subtypes according to their usage of fNIRI signals alone (type 1) or also of additional non-fNIRI signals (type 2).

Univariate methods

A common practice in fNIRI signal processing is to band-pass or low-pass filter the signals in order to remove non-evoked (i.e. SC4–6) components (e.g. Franceschini et al., 2003; Spichtig et al., 2012). For example, a cutoff frequency of 0.2 Hz is commonly used.

To adaptively remove the heartbeat from the fNIRI signals, Gratton and Corbalis (1995) developed an adaptive average waveform subtraction algorithm, and Biallas et al. (2012) and Trajkovic et al. (2009, 2011) presented an approach based on factor graphs. Further methods based on wavelet filtering (Jang et al., 2009; Lina et al., 2008, 2010; Matteau-Pelletier et al., 2009) were proposed. Y. Zhang et al. (2010) developed a method using empirical mode decomposition (EMD) and Hilbert spectral analysis to adaptively filter fNIRI signals. X. Zhang et al. (2012) used wavelet coherence analysis to identify evoked changes in fNIRI signals. Besides these filtering approaches, probably still the most widely used method to remove the components SC4–6, is ‘conventional averaging’ (CA), an average of segments of the fNIRI signal that are time-locked to the presented stimuli. This is also called block averaging or time triggered averaging. An improved version based on Bayesian filtering, outperforming the CA, was presented recently by Gagnon et al. (2014) and Scarpa et al. (2010). All these methods have the disadvantage that they do not enable to separate the components SC1–3 from each other, primarily because the frequency bands of the components SC1–3 overlap with those of SC4–6.

Multivariate methods of type 1

To overcome the limitations of the univariate methods, a great variety of different multivariate methods have been developed over the last decades. It was recognized quite early in the fNIRI research that using the information of fNIRI signals originating from different SDS (multi-distance; MD fNIRI) helps to substantially reduce effects from superficial absorption changes (SC3 and SC6). There is a variety of such MD methods, which is discussed in Spatially resolved and self-calibrating probe multi-distance approaches section. Later tomographic imaging approaches, which are also based on measurements at different distances, enabled an image resolution also in depths of the tissue and thus further enhance the possibility to remove effects of extracerebral tissue (SC3 and SC6) and are discussed in Probe design and Depth resolution by imaging approaches sections. There are also several signal processing frameworks, which among other features take into account the information of MD fNIRI to extract functional brain activity (SC1). These approaches are based on biomedical signal analysis and are discussed in Signal analysis methods to extract the functional brain activity section.

Spatially resolved and self-calibrating probe multi-distance approaches. MD fNIRI is based on a mathematical framework that relies on the theory of light propagation in a semi-infinite medium and analyzes the slopes of the decrease in light intensity as a function of SDS (Fantini et al., 1994; Matcher et al., 1995b; Suzuki et al., 1999). MD fNIRI approaches were developed for CW as well as frequency-domain (FD) fNIRI. In the following we will discuss MD fNIRI methods developed.

The MD approach generally implies that the tissue is measured at several distances at the same time. Several such approaches have been developed to calculate StO2, an absolute value. The two main types of developed MD methods are spatially resolved spectroscopy (SRS) and the self-calibrating (SC) method.

While oxymetry systems from Hamamatsu Photonics (Hamamatsu, Japan) implement SRS (Matcher et al., 1995b; Suzuki et al., 1999), ISS Inc. uses the SC method (Hueber et al., 1999). Both approaches determine absolute values of StO2, but while the ISS system based on FD technology measures the μs and thus provides absolute values of [O2Hb], [HHb], [tHb] too, the SRS system has to assume a reasonable value for μs. StO2 is also called “tissue oxygenation index” or “regional oxygen saturation index” in the literature. It is usually used as oximetry for monitoring and not for fNIRI. But compared to the MBLL approach, MD fNIRI methods have several advantages: (i) They provide absolute values, which are more robust against movement artifacts compared to the time differential MBLL measurements. In the MBLL approach, a change in light coupling is misinterpreted as a change in [O2Hb] and [HHb], while for the MD approach a change in coupling usually affects all distances similarly and therefore cancels. (ii) Calculating the change in light intensity over distance removes the influence of superficial tissue automatically (Franceschini et al., 1998) and consequently is more sensitive to the brain.

CW technology cannot measure μs, but if a reasonable assumption is made for μs, absolute concentrations of [O2Hb], [HHb], [tHb] and StO2 are obtained. Although this approach still requires assuming that the tissue and change in [O2Hb] and [HHb] are homogenous, which is still not completely fulfilled, this assumption is more valid compared to the single source detector distance approach, because the superficial tissue layers are removed by the MD approach.

The SRS method measures at least two SDS, i.e. one source in combination with at least two detectors (or vice versa), which are close together (see Fig. 6b). From the intensity I values measured at the different detectors an attenuation slope ∂I/∂d, where $A = -\log_{10}(I/I_{0})$, is calculated and inserted in the following equation to calculate the μs of the tissue (Suzuki et al., 1999):

$$k\mu_s(\lambda) = \frac{1}{\ln(10)} \left(\ln(10) \frac{\partial I(\lambda)}{\partial d} - 2 \frac{A}{d} \right)^2.$$

This equation is based on a solution of the diffusion approximation for a semi-infinite homogenous medium and a short pulse from a point source (Patterson et al., 1989). [O2Hb] and [HHb] are calculated as in Eq. (3). The μs is modeled to decrease linearly over the wavelength range $\mu_s = k(1 - \lambda)$, Since the parameter k will cancel out when calculating $\text{StO}_2 = [\text{O}_2\text{Hb}] / ([\text{O}_2\text{Hb}] + [\text{HHb}])$ and the parameter h is similar for different kinds of tissue and different subjects and given in (Suzuki et al., 1999). With a reasonable assumption for μs absolute [O2Hb] and [HHb] can be calculated. Note that ∂I/∂d only becomes approximately linear for longer distances. In addition, the detectors need...
to be placed close together, so that the different light paths probe the most similar volume.

The SC approach (Hueber et al., 1999) enables to compensate for time varying differences in light coupling by employing at least two sources and two detectors, which are arranged symmetrically. Each source has a separation \(d_s\) to one detector and \(d_d\) to the other detector, with \(d_s > d_d\). The slope \(SI\) of the decrease in light intensity \(I\) with the increasing distance is calculated using following equation (Hueber et al., 1999):

\[
SI = \frac{1}{2} \ln \left(\frac{I_{L}}{I_{S}} \right) + \frac{1}{2} \ln \left(\frac{I_{L}}{I_{S}} \right).
\]

The indices \(I_1, I_2, S_1\) and \(S_2\) denote the different source–detector paths (Fig. 6a) and \(L_1, L_2\), etc. being the measured intensity from this source detector pair.

Due to the symmetry, the coupling factors of each source and detector appear both in the denominator and numerator and thus conveniently cancel out. Note that the slope is linear also for shorter distances and is wavelength dependent. The slope is related to \(\mu_s\) as follows:

\[
SI_{dc} = -\sqrt{\frac{\mu_s}{\mu_s'}}
\]

\(D\) is the diffusion coefficient \(D = 1 / (\mu_s + \mu_s') \approx 1 / \mu_s'\). [O₂Hb] and [HHb] are calculated as in Eq. (3) by assuming a value for \(\mu_s'\), which can be found in e.g. (Matcher et al., 1997). This approach is also based on a solution of the diffusion approximation for a semi-infinite homogenous medium for a point source (Fantini et al., 1994).

Since changes in light coupling often occur during movements, the advantage of this approach compared to MBLL and SRS is that the coupling factors cancel out and thus the influence of movement artifacts is much reduced. Also a potential drift of the light sources and detector sensitivity cancel out.

It was shown that MD fNIRI based changes in [O₂Hb], [HHb], [tHb] and StO₂ are only slightly influenced by changes in SBF/SBV induced by an extracarotid artery clamp (Al-Rawi et al., 2001), and the MD fNIRI methodology is superior to the traditional MBLL approach in excluding extracranial hemodynamic changes (Canova et al., 2011); but MD fNIRI does not completely remove changes in the extracerebral compartment (Davie and Grocott, 2012). The original MD fNIRI approach was extended to two-layer models (Choi et al., 2004; Fabbri et al., 2004) and ultimately to five-layer models (Yamada et al., 2009, 2010), the last one including also \(\mu_s'\) changes in the modeling. Concerning the limitations of the method, Franceschini et al. (1998) showed using a MD fNIRI approach based on a two-layer model that absorption changes in the lower layer can be correctly determined when the layer thickness is less than ~0.6 cm. In conclusion, the MD fNIRI methodology is a promising approach to reduce the sensitivity of fNIRI signals to the extracerebral compartment (i.e. the components SC3 and SC6). However, the removal of the systemic activity type 1 (i.e. SC2) is not possible using this approach.

Depth resolution by imaging approaches. A further development of the MD methodology is to use more sources and detectors and perform forward and inverse modeling in order to determine spatiotemporal absorption changes. Although more complex mathematical models like the diffusion equation (Patterson et al., 1989) have been applied to model the light propagation in tissue, for the low number of sources and detectors and therefore the low complexity initially used in many fNIRS systems, the MBLL law is well suited. Systems working in time domain (TD) and frequency domain (FD) have traditionally used more complex mathematical frameworks based on derivations of the diffusion equation in complex geometries (Arridge et al., 1992) or even direct derivations of the Boltzmann radiative transfer equation (Klose and Larsen, 2006) to model how light travels through highly scattering tissue. These models allow calculating not only the optical properties of bulk tissue but also to reconstruct chromophore concentrations in a three-dimensional space. These tomographic images are obtained by defining how light travels through a highly scattering heterogeneous medium using a model based on the above mentioned mathematical frameworks. This is the so-called forward problem and there are various implementations using methods of different complexity. Once the forward problem is defined it needs to be inverted in order to reconstruct the chromophore concentrations from a given measurement. This is a non-trivial problem which is ill-posed due to the absorbing nature of tissue and the limited amount of light that can be obtained with present setups. For this reason such problems require regularization techniques such as Tikhonov (Tikhonov and Arsenin, 1977) in order to obtain a converging solution.

Numerical methods based on the local solution of the diffusion equation in a meshed space (Arridge et al., 1993; Dehghani et al., 2009a) such as finite elements method (FEM) have been among the most popular methods to define the forward model due to their inherent flexibility to model irregular spaces and the ability to include prior information from other tomographic sources. Linearized solutions of the analytical solution of the diffusion equation (Kak and Slaney, 1988; O’Leary, 1996) have been widely used to model heterogeneous highly scattering tissue due to its relatively simple implementation and its computational efficiency. This last method presented major difficulties when employed for irregular volumes, however this problem has been solved (Ripoll and Ntziachristos, 2006). Monte Carlo methods have been applied as well (Hayakawa et al., 2001) and became very attractive with the advent of GPU based computation (Fang and Boas, 2009), which allowed for parallel simulation of many photons using a desktop PC.

Signal analysis methods to extract the functional brain activity. Besides the technical approaches (like MD or forward/inverse modeling), several signal processing frameworks were developed that use fNIRI signals from different SDS. For example, a class of such approaches...
comprises methods based on regression analysis to remove the systemic interferences. Franceschini et al. (2003) placed an fNIRI channel on a non-activated brain region to subtract it from a channel over an activated brain region. This approach is particular, because it not only removes the influence of extracerebral tissue (SC3 and SC6), but also of cerebral tissue (SC4 and SC5) components. Saager and Berger (2005) developed a method of applying a short SDS of 5 mm, which is much less sensitive to deep tissue such as the brain, as a regressor on longer distances and performs a linear regression using a linear minimum mean square estimation (LMMSE) in order to remove the influence of extracerebral layers from the fNIRI signal. This method was successfully tested using fNIRI data from adults (Biallas et al., 2012a; Saager and Berger, 2008; Saager et al., 2011) and newborns (Biallas et al., 2012b; Liao et al., 2010). A similar regression method (‘superficial signal regression’), which uses the averages of all short (1.3 cm) SD channels as a regressor, was developed by Gregg et al. (2010). In Saager et al. (2011) an improved version of the approach was presented using an 8-channel probe configuration and 2 small SD channels (5 mm). Gagnon et al. (2011, 2012) investigated how the position of the short SD channel relative to the long SD channel impacts the performance of the method. They concluded that the separation between the channel of interest and the regressor distance should be <1.5 cm. In a further study Gagnon et al. (2014) showed that usage of two short SD channels for the regression analysis is superior to using only one. The short SD channels should be located close to the source of the long SD channel and close to the detector of the same long SD channel. Another finding was that the regression methodology improves the [O2Hb] signals more than [HHb] signals, which confirms a previous study of the same group (Gagnon et al., 2011). The method of Saager and Berger was further developed by Zhang et al. (2007a) who considered also non-stationarities of the signal by replacing the LMMSE with a least mean squares (LMS) adaptive filtering algorithm. They validated their method using simulated (Zhang et al., 2007a) and real fNIRI data (Zhang et al., 2007b, 2009). An improvement of this method was presented in Y. Zhang et al. (2012) where they described how to use a recursive least squares (RLS) algorithm, which exhibits a fast convergence, instead of the LMS for the adaptive filtering which improves the results. Tian et al. (2011) presented a method that uses two adaptive filters with specific frequency bandwidths to process a reference signal in order to remove it from the target fNIRI signal. As the NIRS-SRS methodology, these approaches reduce the sensitivity of fNIRI to the extracerebral compartment (i.e. the components SC3 and SC6), but they are not able to remove systemic activity type 1 (i.e. SC2).

A further class of approaches is based on state-space modeling using Kalman filtering (Abdelnour and Huppert, 2009; Diamond et al., 2005, 2006; Gagnon et al., 2011, 2014; Kamrani et al., 2012; Kolehmainen et al., 2003; Prince et al., 2003) or recursive least-squares estimation (Aqil et al., 2012a,b). State-space models model the data as a system with time-varying parameters that have to be estimated. The use of a model-based fNIRI analysis approach by means of the general linear model (GLM) methodology (Bullmore et al., 1996; Friston et al., 1995; Worsley and Friston, 1995) was reported by several authors (e.g. Boas et al., 2003; Ciuchi et al., 2008; Fekete et al., 2011; Hu et al., 2010; Imai et al., 2012; Koh et al., 2007; Moriai-Izawa et al., 2012; Plichta et al., 2009; Zhang et al., 2007a,b; Schroeter et al., 2004; Tsuzuki et al., 2012; Ye et al., 2009). GLM is a statistical linear model explaining data as a linear combination of an explanatory variable plus an error term. How to combine GLM with a Kalman estimator and to analyze fNIRI data was shown by Hu et al. (2010). Methods using independent component analysis (ICA) (Akgül et al., 2006; Katura et al., 2008; Kohno et al., 2007; Markham et al., 2009; Medvedev et al., 2008; Morren et al., 2004; Schelkanova and Toronov, 2012) or principal component analysis (PCA) (Franceschini et al., 2006; H. Zhang et al., 2010; H. Zhang et al., 2011; Mäki et al., 2010; Sitaram et al., 2007; Soe and Nakagawa, 2008; Virtanen et al., 2012; Y. Zhang et al., 2005) were also developed to address the obstacle of how to remove systemic interferences. Virtanen et al. (2009) compared the ability of ICA and PCA to exclude extracerebral signals and concluded that PCA typically performs equal to or better than ICA. Since they did not use a functional paradigm per se but analyzed hyper- and hypocapnia data, their findings do not automatically apply to fNIRI. According to the findings of Markham et al. (2009), ICA is better suited to extract stimulus-evoked hemodynamic responses. Other approaches presented to reduce the physiological interference and/or remove the influence of the extracerebral compartment from the fNIRI signals include the following: Scarpa et al. (2011) developed a method that first models the physiological interference using a reference channel (with small SDS), and then uses this model for filtering with a non-parametric Bayesian approach. They showed that this method outperforms band-pass- and PCA-based filtering. Heiskala et al. (2012) proposed a Bayesian approximation error approach to reduce the physiological interference. Y. Zhang et al. (2011) presented an advanced signal-regression scheme: an fNIRI channel with a short SDS is decomposed into intrinsic mode functions (IMFs) by using EMD and a weighted sum of these IMFs is used as a regressor to filter out the physiological interference in long SD fNIRI channels. Tanaka et al. (2013) developed a new signal processing method, ‘task-related component analysis’ (TRCA), to extract task-related components from fNIRI signals by constructing a weighted sum of them while maximizing the covariance or correlation between the task blocks. They showed that the method is able to extract task-related components and also automatically offers the possibility to correct for movement artifacts to a certain degree. This class of methods (state-space modeling, GLM, ICA/PCA, Bayesian filtering with reference, EMD-bases regression, TRCA) is able to remove components SC4–6 and also partially SC3, but are not able to distinguish between SC1 and SC2.

Two other methods (Cui et al., 2010; Yamada et al., 2012) exploit the fact that changes in fNIRI signals have a specific characteristic when caused by functional brain activity or systemic interferences. Specifically, Cui et al. (2010) derived an ‘activation signal’ that is determined by combining the [O2Hb] and [HHb] in such a manner that only the anti-correlated parts of the signals remain in the final signal. Yamada et al. (2012) developed a method that separates an fNIRI signal into the neuronal and systemic part by using a system of equations modeling the functional neuronal part ([O2Hb] and [HHb] are negatively correlated) and the systemic part ([O2Hb] and [HHb] are positively correlated). The correlation strength is modeled by two parameters where the first parameter can be determined from previous fNIRI experiments and the second parameter is directly determined by using the input fNIRI signals and by minimizing the mutual information between the [O2Hb] and [HHb] signals. The proposed method gives similar results to the MD fNIRI method developed by Yamada et al. (2009) which is based on the five-layer modeling, the incorporation of μ and σ changes and the processing of two fNIRI channels with different SD separations (2 and 3 cm). These two methods (Cui et al., 2010; Yamada et al., 2012) are the only methods of type 1 that enable to reduce the components SC4–5 and, in principle, separating the component SC1 from SC2–3. However, the separability of SC1 from SC2–3 relies on the assumptions made about the characteristic of the systemic interferences. The assumptions used in Cui et al. (2010) and Yamada et al. (2012) work only if the systemic changes are not induced by variations in PaCO_2 since in this case the systemic changes have a different characteristic (Scholkmann et al., 2013) compared to the one used for the modeling.

Multivariate methods of type 2

This type of approach is defined as methods that incorporate fNIRI signals and systemic signals (such as BP, skin conductance (SC), heart rate, PaCO_2, etc.) in parallel into the signal analysis in order to distinguish the different fNIRI signal components. Up to now, only a few methods were presented and evaluated that address this task. As an early approach, Morren et al. (2004) used a pulse oximeter placed on
the finger to record the heartbeat waveform which was used as a reference signal in an adaptive filter to remove the component from the fNIRI signals. Obviously, this approach is only able to partly remove systemic activity types 3 (SC5) and 4 (SC6) (i.e. only the heartbeat). Tachtsidis et al. (2010) presented an approach designed to combine fNIRI data with systemic physiological data (i.e. mean blood pressure (MBP), heart rate (HR), and scalp blood flux) in order to separate between the different signal components. They used a GLM for the regression analysis and ‘Statistical Parametric Mapping’ (SPM) for the statistical group analysis. Another approach combining fNIRI data and systemic physiological signals was presented by Kirilina et al. (2012) who used a GLM model that included a cerebral predictor modeling responses to the experimental task and an additional extracranial predictor to model task-evoked scalp hemodynamic changes which were directly measured in the cutaneous veins using fMRI. They suggest that in particular $[O_2Hb]$ is contaminated by systemic interferences.

In conclusion, as far as we know, the approaches of Kirilina et al. (2012), Patel et al. (2011) and Tachtsidis et al. (2010) are the only ones enabling to separate all components (SC1–6).

fNIRI software

Over the years the complexity of CW fNIRI systems has grown to such extent that nowadays they use the same complex mathematical models as TD-NIRI and FD-NIRI systems to obtain tomographic images. Proprietary reconstruction systems as well as many different open source software products implementing some of the previously described techniques (Arridge et al., 1993; Dehghani et al., 2009b; Fang and Boas, 2009) are available to evaluate the results obtained from fNIRI systems. In the following we shortly describe the most important ones.

- HomER2 (PMILab, 2012) is further development of the original version HomER (Huppert et al., 2009). It is a software for studying evoked hemodynamic changes within the brain using fNIRI.
- NIRS-SPM (NIRS-SPM, 2013) is a software package for statistical analysis of fNIRI data using a framework based on a general linear model (GLM) and Sun’s tube formula/Lipschitz–Killing curvature (LKC) based expected Euler characteristics.
- FOSA-SPM (FOSA-SPM, 2013) enables the processing and analysis of fNIRI data by using the SPM approach.
- TOAST (TOAST, 2013) is an open-source software that has been developed by the University College London for many years. It was one of the first tools that allowed FEM based image reconstructions of fNIRI data including prior anatomical information using time-resolved measurements with different wavelengths. It includes several regularization methods and inverse problem solvers.
- NIRFAST (NIRFAST, 2013) is probably one of the most complete and popular softwares used in the NIRI community. It is a FEM based tool very similar to TOAST (time-resolved measurements are supported, multi wavelength capable, etc.) that allows as well the image reconstruction of fluorescence measurements.
- Photon Migration Imaging Toolbox (PMI) (PMI, 2013) is a software that uses linearized solutions of the diffusion equation to simulate and reconstruct images of fNIRI data. It cannot include anatomical information and is restricted to a few standard geometries (infinite medium, semi-infinite medium ...).
- Monte Carlo eXtreme (Monte Carlo eXtreme, 2013) is a Monte Carlo simulation platform for NIR light propagation in highly scattering media. It uses Graphics Processing Units (GPU) acceleration to parallelize the simulation of the photons. This tool simulates the forward problem in a more accurate manner than the other methods. Its results can be later used in any of the previously presented tools, to assess the performance of the inversion solver.
- NIRSOFT is a stand-alone software package designed to process, analyze and visualize fNIRI data.
- NAP (Fekete et al., 2011) is a software for noise reduction and statistical inference of fNIRI data.
- POTato (POTATO, 2013) is a software package for fNIRS signal processing and analysis, developed by Hitachi, Ltd.
- NAVI (NAVI, 2013) is proprietary software developed by NIRx. This software is a FEM based solution that allows the inclusion of prior anatomical data as well as the integration of data coming from other instrumentation such as EEG.
- A collection of different MATLAB functions for fNIRS data processing is available from the website of the Functional Brain Science Lab, Jichi Medical University, Tochigi, Japan (Jichi Medical University, 2013).

Future directions of fNIRI

As one can see in the exponential growth of the number of publications on fNIRI, the development of fNIRI is continuing and much progress has already been made during the last 35 years. It is foreseeable that this progress will be sustained, because the potential of fNIRI is still far from being fully exploited.

For continuous wave fNIRI instrumentation, there will be an incentive to build instruments that incorporate an increased number of light sources and detectors in order to take more advantage of already existing imaging algorithms. These instruments will also offer a higher dynamic range in order to measure at a wider range of SD distances, which will further optimize the depth resolution of the images.

For frequency domain fNIRI, there is already an fNIRI instrument commercially available, which incorporates mature technology at a price comparable to continuous wave instruments. This enables a more accurate quantification of the signals compared to continuous wave instruments. The development in frequency domain will focus on solid state devices with a higher number of detectors, which will be able to measure phase in addition to intensity. For frequency domain as well as for continuous wave and time domain fNIRI instrumentation there will be a trend to increase the number of detectors rather than the number of light sources, because this increases the amount of obtainable information without increasing the energy that is emitted into the tissue. The advantage of frequency domain fNIRI is that it can easily be miniaturized.

Time domain fNIRI will probably experience the largest progress among the three technologies. So far this instrumentation has been bulky and expensive. Novel detectors are being developed, such as e.g. silicon photomultipliers, which are based on single photon avalanche photodiodes (SPADs) (Zimmermann et al., 2013a). So far the silicon photomultipliers are only used in continuous wave instrumentation. But novel technology enables to incorporate time to digital converters (TDCs), which measure the arrival times of photons with a high time resolution in the order of picoseconds. SPADs and TDCs have the advantage that they can be highly miniaturized using standard technology, which leads to camera chips incorporating a high number of detectors, each with the capability to detect single photons and measure their time of flight (Mata Pavia et al., 2011). In addition, picosecond pulsed light sources are becoming more readily available, even supercontinuum light sources with freely selectable wavelengths. Compared to continuous wave and frequency domain fNIRI, time domain fNIRI yields the highest amount of information about the migration of the photons through the tissue. Therefore, it also promises to provide the images with the highest spatial resolution in 3D.

Consequently, in the future, imaging instrumentation will be increasingly sophisticated and fNIRI imaging of the brain will provide an increasing spatial and temporal resolution. This will enable further progress in data analysis algorithms and enhance the range of applications. fNIRI can easily be combined with other neuroimaging modalities such as fMRI, EEG, PET and MEG, which can also be seen from the number of publications on multimodal imaging systems and their increasing
applications. Combining neuroimaging modalities has the advantage of delivering more comprehensive information, e.g., how electrophysiological and hemodynamic/metabolic signals are correlated.

It is also foreseeable that there will be much progress in probe design. One challenge is to incorporate an increasing number of sources and in particular detectors in the probe and at the same time optimize the ease of application and comfort for the subjects/patient. Another challenge is to minimize the impact of the light absorbing hair. Although these may appear as minor issues, they are important, because the applicability and also the signal quality of fNIRI also depend significantly on them. There are several possible approaches to improve the conditions, e.g. probes can be miniaturized and of less weight. A solution to minimize the effect of hair might be the use of brush optodes (Khan et al., 2012). The coupling of the fibers can be improved e.g. by bio-compatible glue. Another option may lay in wearable photonics textiles (Rothmaier et al., 2008) or electronics (Zysset et al., 2013). Such developments in combination with miniaturized, wireless fNIRI instrumentation will enable unobtrusive measurements in many everyday situations.

There will also be a tremendous development of signal processing for fNIRI. The future will provide fNIRI instrumentation, which will yield orders of magnitude more information than today. This requires algorithms and tools that allow to take advantage of this development and to extract the most relevant results with higher accuracy. At the same time these algorithms need to be efficient enough to calculate these results fast.

An important future task will be the optimization and validation of the methods presented in Methods to separate different components in fNIRI signals section. One promising development already is the combination of the described univariate methods with the multivariate methods 1 and 2. The further development of this approach will be an important topic of research. Regarding the complexity of fNIRI signals with respect to their origin, a proper separation of the fNIRI components is relevant for a correct interpretation of hemodynamic changes, i.e. the separation of the systemic and functional, extra-cerebral and cerebral components. Especially, in combination with imaging in 3D, these methods will become much more powerful and a correct separation of the signal components will lead to more reliable data and thus tremendously facilitate the interpretation of the fNIRI signals. It is obvious that this will be a key factor, which will promote the application fNIRI.

In the future the scope of applications of fNIRI will continuously grow, and probably at increasing speed. The strengths of fNIRI compared to other non-invasive neuroimaging techniques such as EEG, fMRI or MEG include its portability, potential wearable, ease of application, and the low purchase and operation costs (especially when compared to fMRI and MEG), the spatially localized nature of fNIRI in contrast to EEG and the more complete information (O₂Hb in addition to HHb) compared to fMRI and its compatibility with other neuroscience techniques.

Since fNIRI is highly sensitive to hemodynamic fluctuations and oscillations, future studies will exploit this opportunity by gaining deeper insights into the interplay between neuronal and systemic oscillations and the physiological basis of the resting state networks, as already shown (Tong et al., 2013).

In medical diagnostic applications, decisions have to be made for each patient individually. The instrumental and signal analysis developments in fNIRI will lead to more robust and reliable measurements. This will enable reproducible measurements in single subjects. Once this has been achieved, many clinical diagnostic applications will become feasible. Unique possibilities range from early diagnosis of cognitive or motor dysfunctions in preterm infants, which potentially enable early treatment while the brain still has high plasticity, the analysis of brain functions in unconscious intensive care patients, the analysis of the brain state during surgery, the detection of a stroke in the ambulance up to psychiatric applications such as e.g. assessing the state of a disorder, monitoring therapy and the evaluation of brain function in small children to detect and treat functional deficits, etc.

Potentially very important, is the fact that fNIRI is in principle easy to apply, that with continued development, in the future professional staff will not be always necessary. Since fNIRI can be miniaturized and made wearable, this offers new fields of application, for instance as a tool to provide novel forms of therapy for severely impaired stroke patients (Zimmermann et al., 2013b), which will lead to a more effective rehabilitation. It can also be applied as method to provide neuro-feedback for basic neuroscientific studies and/or therapeutic interventions (Sulzer et al., 2013; Tinus and Pa, 2005).

The ability to measure brain activity without being constrained by cables also offers studying novel paradigms, such as hyperscanning, i.e. the analysis of the interaction of brain activity between subjects through measuring simultaneously in two or more subjects (Dommer et al., 2012; Holper et al., 2012, 2013). Studies can be conducted in freely moving subjects. This can be important in sports science, but it is also relevant e.g. in the field of animal welfare, where e.g. the emotional state of sheep (Muehlemann et al., 2011) or goats (Gygax et al., 2013) can be accessed.

It is likely that the development will achieve such high reliability of fNIRI signals that single trial classification can be obtained with a high accuracy. This means that even a single brain activation can be detected. This opens a new field in brain computer interface, which will lead to many everyday life applications. One important application will be prosthetics for stroke victims, paraplegics and other disabled persons, who may be able to guide support systems with their brain activity. Evidently this enumeration is by no means complete, but it is obvious that today we have merely reached the tip of an iceberg. fNIRI will become an indispensable clinical method and also enter our daily lives.

Conclusions

fNIRI celebrates its 35th birthday. From the single-location measurements at the beginning the instrumentation has developed into first two dimension (topography) and then three dimensions (tomography). Also the methods of analysis have changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and a number of manufacturers provide commercial instrumentation. It is foreseeable that fNIRI will become a clinical tool in the future, which will enable diagnosis in single subjects.

Acknowledgments

We acknowledge funding from the Swiss National Science Foundation, Nano-Tera, CHIRP1 ETH Research Grant CH1-02 09-3, and the Clinical Research Priority Programs Tumor Oxygenation and Prosthetics for stroke victims, paraplegics and other disabled persons, etc.

Conflict of interest statement

We declare that we have no conflict of interest.

References

Shimadzu, Japan. www.med.shimadzu.co.jp (Last Visited: 01/30/2013).

